Heritability of Atrial Fibrillation

Citation:

Weng L-C, Choi SH, Klarin D, Smith GJ, Loh P-R, Chaffin M, Roselli C, Hulme OL, Lunetta KL, Dupuis J, Benjamin EJ, Newton-Cheh C, Kathiresan S, Ellinor PT, Lubitz SA. Heritability of Atrial Fibrillation. Circ Cardiovasc Genet 2017;10(6)

Date Published:

2017 Dec

Abstract:

BACKGROUND: Previous reports have implicated multiple genetic loci associated with AF, but the contributions of genome-wide variation to AF susceptibility have not been quantified. METHODS AND RESULTS: We assessed the contribution of genome-wide single-nucleotide polymorphism variation to AF risk (single-nucleotide polymorphism heritability, h2g ) using data from 120 286 unrelated individuals of European ancestry (2987 with AF) in the population-based UK Biobank. We ascertained AF based on self-report, medical record billing codes, procedure codes, and death records. We estimated h2g using a variance components method with variants having a minor allele frequency ≥1%. We evaluated h2g in age, sex, and genomic strata of interest. The h2g for AF was 22.1% (95% confidence interval, 15.6%-28.5%) and was similar for early- versus older-onset AF (≤65 versus >65 years of age), as well as for men and women. The proportion of AF variance explained by genetic variation was mainly accounted for by common (minor allele frequency, ≥5%) variants (20.4%; 95% confidence interval, 15.1%-25.6%). Only 6.4% (95% confidence interval, 5.1%-7.7%) of AF variance was attributed to variation within known AF susceptibility, cardiac arrhythmia, and cardiomyopathy gene regions. CONCLUSIONS: Genetic variation contributes substantially to AF risk. The risk for AF conferred by genomic variation is similar to that observed for several other cardiovascular diseases. Established AF loci only explain a moderate proportion of disease risk, suggesting that further genetic discovery, with an emphasis on common variation, is warranted to understand the causal genetic basis of AF.

Last updated on 01/26/2018